
1 Capacité thermique

Exercice 1 : Barre d’acier (Test de présélection 2025)

Afin d’amener l’eau à ébullition, en supposant que le système est étudié sous la pression
atmosphérique, il faut amener l’eau à 100◦C.

On considère le système constitué de l’eau, du calorimètre et de l’acier. A l’équilibre, ce
système a une température Teq. La condition est donc que Teq = 100◦C.

Comme ce système est isolé et qu’on considère le calorimètre parfait (c’est à dire que le
changement de température de ces parois ne demande qu’une énergie négligeable devant
celles considérées 1), le premier principe s’écrit :

∆E = 0

Comme le système est macroscopiquement au repose (on ne considère pas de mouvement du
calorimètre),

∆U = 0

Or, par extensivité des quantités considérées 2, on obtient :

∆Ucalorimetre +∆Ueau +∆Uacier = 0

Comme le calorimètre est parfait :

∆Ueau +∆Uacier = 0

On utilise ensuite la loi de Joule appliquée à chacun des constituants :

ceaumeau(Teq − θamb) + caciermacier(Teq − Tini) = 0 ⇐⇒ Tini = Teq +
ceaumeau(Teq − θamb)

caciermacier

A.N.
= 694◦C

Réponse 4.

Exercice 2 : Boisson fraîche (Test de présélection 2024)

Le système considéré est le jus de fruit et les N glaçons ajoutés, où N est l’inconnue du
problème.

Comme le système est isolé et macroscopiquement au repos, le premier principe s’écrit :

∆U = 0

Par extensivité de l’énergie interne :

N∆Uglacon +∆Ueau = 0

1. Vous avez peut-être déjà entendu la notion de masse en eau d’un calorimètre. Cela correspond à la masse
d’eau à réchauffer équivalente au coût énergétique de réchauffement ds parois du calorimètre. Elle est généralement
de l’ordre de 20 à 30 g pour les calorimètres de travaux pratiques et peut généralement être négligée. C’est le
modèle du calorimètre idéal qui est généralement utilisé dans les exercices sans précision supplémentaires.

2. Cela signifie qu’on peut sommer les contributions énergétiques de chacun des sous-systèmes.

1/18

IPhO : Thermodynamique
(corrections)



Physicité IPhO : Thermodynamique (corrections)

Du fait de la fonte du glaçon, une énergie supplémentaire est absorbée par le système 3

Ainsi, d’après lecture de l’énoncé, en notant T0 = 0◦C, Tf = 10◦C :

∆Uglacon = ceauVglaceρglace(Tf − T0)− qVglaceρglace

Comme les glaçons absorbent de l’énergie lors de la fusion, leur énergie finale est plus élevée
que l’énergie initiale, c’est ce qui explique le signe -. Soit, en notant Ti = 30◦C :

NVglaceρglace(ceau(Tf−T0)−q)+ceaumeau(Tf−Ti) = 0 ⇐⇒ NVglaceρglace(Tf−T0−
q

ceau
)+(Tf−Ti)meau = 0

Ainsi, le nombre de glaçons s’exprime comme :

N =
meau(Tf − Ti)

Vglaceρglace(−Tf + T0 +
q

ceau
)

A.N.
= 24

Réponse 1.

Exercice 3 : A la douche

Cet exercice traite d’un système ouvert puisque l’eau arrive en continu. Des outils plus
pertinents seront introduits en études supérieures. Pour l’instant, nous nous contentons de
considérer deux masses d’eau qui arrive au niveau du mélangeur pendant une durée ∆t. Ces
masses sont respectivement Dc∆t et Df∆ où Dc et Dt sont les débits massiques d’eau chaude
et d’eau froide. Le débit d’eau tiède est égal à la somme des débits, ainsi la masse d’eau tiède
est égale à (Dc +Df )∆t.

Le premier principe appliqué à ce système isolé, en négligeant l’énergie cinétique de
déplacement macroscopique du fluide :

∆U = 0 ⇐⇒ Dc∆t(θt − θc) +Df∆t(θt − θf ) = 0 ⇐⇒ Dc

Df
=

θf − θt
θt − θc

On a noté θt = 35◦C.
On en déduit

Dc

Df
=

25

25
= 1

Les deux débits sont identiques.

2 Premier principe de la thermodynamique

Exercice 4 : Chute d’Iguazu

On utilise le premier principe de la thermodynamique appliqué au système goutte que l’on
suppose isolé. On néglige ainsi les transferts thermiques et les frottements.

∆E = 0

Il faut veiller ici à prendre en compte l’énergie macroscopique, l’énergie potentielle de
pesanteur.

mceau(Tbas − Thaut) +mg(zhaut − zbas) = 0 ⇐⇒ Tbas − Thaut =
g

ceau
(zhaut − zbas)

A.N.
= 0, 190◦C

3. C’est ce qu’on appelle la chaleur latente de fusion. Tous les changements d’état libèrent ou nécessitent de
l’énergie. Cette notion sera entièrement décrite dans les études supérieures.
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Exercice 5 : Frottement des mains

On utilise le premier principe de la thermodynamique appliqué à l’épiderme. La variation de
son énergie interne s’écrit c∆TeSρ tandis que le travail lié à la force de frottement est égal à
W = P∆t. En l’absence de transfert thermique, on obtient :

∆U = W ⇐⇒ c∆TeSρ = P∆t ⇐⇒ ∆T =
P∆t

ceSρ

A.N.
= 1, 9◦C

Exercice 6 : Whisky "on the rocks"

1. La variation d’énergie interne sur une durée dt est la capacité thermique fois la variation
de température sur cette durée :

dU = C(T (t+ dt)− T (t)) = CdT

La capacité thermique est la masse fois la capacité thermique massique. La masse est la
masse volumique fois le volume :

dU = ρa3cdT

2. On applique le premier principe de la thermodynamique entre t et t+ dt :

dU = δQ+ δW

Ici δW = 0, aucune force ne travaille dans le système, et les seuls transferts thermiques ayant
lieu sont d’origine conducto-convective. On utilise donc la loi de Newton pour affirmer que

δQ = hS(T1 − T )dt = 6ha2(T1 − T )dt

Car la surface extérieure S d’un cube est 6 fois celle d’une face. Pour savoir quel signe mettre,
on raisonne qualitativement : si T1 > T , l’extérieur est plus chaud que la pierre, la pierre reçoit
donc de l’énergie, δQ < 0. Finalement :

dU = 6ha2(T1 − T )dt

3. On a alors :
ρa3cdT = 6ha2(T1 − T )dt

dT

dt
=

6h

ca
(T1 − T )

On pose donc τ = ca
6h et T∞ = T1 et on obtient, comme demandé :

dT

dt
+

T

τ
=

T∞
τ

4. On résout d’abord l’équation homogène associée :

dT

dt
+

T

τ
= 0

De solution Th(t) = λe−t/τ .
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On trouve ensuite une solution particulière. Elle doit être de la forme du second membre,
c’est-à-dire constante, on doit donc avoir :

Tp

τ
=

T1

τ

Tp = T1

Finalement, T (t) = Th(t) + Tp = λe−t/τ + T1. On trouve λ en utilisant la condition initiale :
T (t = 0) = T0, λ+ T1 = T0. Ce qui donne :

T (t) = (T0 − T1)e
−t/τ + T1

Il est rassurant de voir que la température du bloc va décroître et se rapprocher indéfiniment
de la température du congélateur.

Exercice 7 : L’effet de serre (adapté des IPhO 2024)

1. On considère que le Soleil émet un rayonnement isotropique, identique dans toutes
les directions de l’espace. Ainsi, la puissance émise par la surface du Soleil se répartit, à
une distance R du centre du Soleil sur une sphère d’aire 4πR2. Ainsi, au niveau de la surface
terrestre, on considère R = dTS .

S0 =
σT 4

S4πR
2
S

4πd2TS

=
σT 4

SR
2
S

d2TS

2. Par définition, S0 correspond à la puissance surfacique reçue au niveau de la terre, sur
une surface normale. Or la surface normale pour la Terre vaut πR2

T alors que cette même
puissance solaire se répartit sur la sphère d’aire 4πR2

T . Si on nomme S, la puissance surfacique
effectivement reçue par la Terre, on obtient donc :

πR2
TS0 = 4πR2

TS ⇐⇒ S =
S0

4

3. On suppose ϵ = 1 et rE = 0. On effectue deux bilans énergétiques. Le premier est fait sur
l’atmosphère, le second sur la Terre. Pour l’atmosphère :

σT 4
E4πR

2
E = 2(4πR2

E)σT
4
A

Le facteur 2 est dû au fait que l’atmosphère émet dans les deux directions, à la fois vers le
haut et vers le bas. Pour la Terre :

πR2
E(1− rA)S0 + (4πR2

E)σT
4
A = (4πR2

E)σT
4
E

TA = (
(1− rA)

S0
4

σ
)
1
4

TE = (2T 4
A)

1
4

4. Une partie (1 − rA) de la radiation solaire qui atteint la surface de la Terre traverse
l’atmosphère. Une fraction rE de cette radiation est reflétée et atteint à nouveau l’atmosphère
où une fraction rA est reflétée et retourne à la surface de la Terre. Ce processus se répète à
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l’infini. La somme des puissances transmises détermine alors l’albedo. On note sn la puissance
qui retourne dans l’espace après n réflexions.

s0 = rAS0

s1 = (1− rA)
2rES0 =

(1− rA)
2

rA
rEs0

Plus généralement,
sn =

sn−1

1− rA
rArE(1− rA) = rArEsn−1

On reconnaît une suite géométrique :

sn = (rArE)
n−1s1

On veut sommer tous les termes pour obtenir la puissance totale :

s =
∞∑
n=0

sn = s0 + s1

∞∑
n=1

(rArE)
n−1 = rAS0 + (1− rA)

2rES0
1

1− rArE
= S0(rA +

(1− rA)
2rE

1− rArE

L’albedo est alors défini comme α = s
S0

= rA+ (1−rA)2rE
1−rArE

5. A nouveau, à l’équilibre thermique,
les puissances entrantes et sortantes doivent être identiques. radiation solaire absorbée :

σT 4
E4πR

2
Eϵ = 2(4πR2

E)σT
4
Aϵ

πR2
E(1− rA)S0 + (4πR2

E)σT
4
Aϵ = (4πR2

E)σT
4
E

Nous en déduisons les nouvelles valeurs des températures :

TE = (
1− α

2σ(2− ϵ)
S0)

1
4

TA = (
T 4
E

2
)
1
4

6. On dérive l’expression de la température d’équilibre :

TE =

[
(1− α)S0

2σ(2− ε)

]1/4
.

Sa dérivée par rapport à ε vaut :

dTE

dε
=

1

4

[
(1− α)S0

2σ(2− ε)

]1/4 1

(2− ε)
.

Ainsi, la variation est :

δTE =
dTE

dε
ε =

[
4σT 4

E

(1− α)S0
− 1

]
TE

4
× 0.01.

7.Le bilan d’énergie pour la Terre devient :

(πR2
E)(1− α)S0 + (4πR2

E)εσT
4
A = (4πR2

E)σT
4
E + (4πR2

E)k(TE − TA),

et pour l’atmosphère :

(4πR2
E)εσT

4
E + (4πR2

E)k(TE − TA) = 2(4πR2
E)εσT

4
A.
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8.On prend le logarithme des expressions de ε et k :

ln ε = ln

[
σT 4

E − (1− α)S0

4

]
− lnσ − ln

(
T 4
E − T 4

A

)
,

ln k = ln ε+ lnσ + ln
(
2T 4

A − T 4
E

)
− ln(TE − TA).

En dérivant, on obtient le système :

1

ε
=

4σT 3
E

σT 4
E − (1−α)S0

4

dTE

dε
−

4T 3
E

T 4
E − T 4

A

dTE

dε
−

4T 3
A

T 4
E − T 4

A

dTA

dε
,

0 =
1

ε
+

8T 3
A

2T 4
A − T 4

E

dTA

dε
−

4T 3
E

2T 4
A − T 4

E

dTE

dε
− 1

TE − TA

(
dTE

dε
− dTA

dε

)
.

La résolution du système donne :

dTE

dε
=

[
σ(T 4

E − T 4
A)

] [
1 +

T 4
E−T 4

A

4T 3
A

(
8T 3

A

2T 4
A−T 4

E
+ 1

TE−TA

)]
1

TE−TA
+

4T 3
E

2T 4
A−T 4

E
−

(
σT 4

A− (1−α)S0
4

σT 4
E− (1−α)S0

4

)(
TE
TA

)3 [ 8T 3
A

2T 4
A−T 4

E
+ 1

TE−TA

] .


ε

(
1

TE − TA
+

4T 3
E

2T 4
A − T 4

E

)
dTE

dε
= 1 + ε

(
8T 3

A

2T 4
A − T 4

E

+
1

TE − TA

)
dTA

dε
,

[
1 + ε

 4T 3
E

T 4
E − T 4

A

−
4σT 3

E

σT 4
E − (1− α)S0

4

]
dTE

dε
=

4T 3
A

T 4
E − T 4

A

ε
dTA

dε
.

Exercice 8 : Température du Soleil sans réaction thermonucléaire

1. On a :
−dV

dr
= −G

m1m2

r2

On remarque que d
dr

(
− 1

r

)
= 1

r2
. On peut donc prendre, à une constante près,

V (r) = −G
m1m2

r

2. Initialement, chaque particule est infiniment éloignée des autres, donc V0 = 0. Quand
l’étoile est formée, le potentiel V compte toutes les interactions de particules formant
ensemble une masse MS , sur une distance typique RS . Les masses mises en jeu dans le total
de l’interaction sont de l’ordre de MS , et elles ont lieu sur des distances typiques de l’ordre de
RS . Le potentiel total doit donc être du même ordre de grandeur que le potentiel d’interaction
entre deux objets de masse MS séparés par une distance RS . Ainsi, V1 ≈ −GM2

S
RS

. Finalement :

∆Ep = V1 − V0 ≈ −G
M2

S

RS

Si l’on faisait le calcul exact (soit en faisant un calcul d’intégrales, soit avec le théorème de
Gauss), on trouverait ∆Ep = −3

5
GMS

R2
S
.
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3. En s’agrégeant, le nuage a perdu de l’énergie potentielle. Comme pour l’énergie potentielle
de pesanteur que vous connaissez dans le cas d’un champ uniforme, Ep = mgz, on tendance à
aller vers le bas, donc à faire diminuer son énergie potentielle quand on est attiré par une
force attractive. C’est exactement ce qui se passe là, les particules ont été attirées par la
force attractive qu’est la gravitation, elles ont donc perdu de l’énergie potentielle.

4. La variation d’énergie interne est la capacité thermique fois la variation de température.
La capacité thermique est la masse fois la capacité thermique massique. On a donc :

∆U = CMS∆T

5. On applique le premier principe de la thermodynamique au gaz :

∆U +∆Ep = Q+W

Aucune force ne travaille (à part la gravité, mais elle est comprise dans l’énergie potentielle). Il
n’y a pas de transfert thermique car, si l’on néglige le rayonnement, le système est isolé. On
néglige toutes les autres interactions, donc l’énergie potentielle est uniquement celle associée
à l’interaction gravitationnelle. On obtient alors :

CMS(TS − 0)−
GM2

S

RS
= 0

TS =
GMS

CRS

6. Il faut bien faire attention à mettre la masse molaire en unités SI, pour que ce soit
homogène avec la masse et avec G : MH = 1.0g/mol = 1.0 × 10−3kg/mol. Avec cela : TS ≈
2.3× 107K ≈ 1.5× 107K. Donc on retrouve une estimation correcte de la température du Soleil.
L’effondrement gravitationnel de l’étoile peut donc expliquer sa température initiale. Mais
si l’on ne prend en compte que l’interaction gravitationnelle, on ne peut pas expliquer que
l’étoile vive aussi longtemps qu’elles le font. En effet à cette température, l’étoile rayonne une
puissance P = 4πR2

SσT
4
S , d’après la loi de Stefan-Boltzmann. Cela veut dire qu’elle va perdre

son énergie en un temps typique τ vérifiant U0
τ ≈ P . τ ≈ CMS

R2
SσT

3
S
≈ 5× 101s, ce qui est absurde.

On a donc envie de conclure que la gravitation ne peut pas être la seule source d’énergie pour
une étoile. Mais bien sûr, ce chiffre est grandement sous-estimé puisque se met en place au
sein du Soleil un gradient de température, ce qui fait que la température en surface n’est pas
du tout celle du cœur de l’étoile. Il faudrait, pour démontrer ce que l’on cherche à démontrer,
faire une estimation du profil de température, pour relier la température au cœur de l’étoile à
celle en surface. On pourrait alors calculer un temps typique de disparition de l’étoile dans un
modèle sans réactions thermonucléaires, et on verrait bien que celui-ci serait beaucoup trop
court par rapport à la durée de vie de notre Soleil.

Exercice 9 : Éruption du volcan Mérapi (adapté de l’épreuve des IPhO 2017

1. Dans la première phase, l’équilibre thermique est atteint presque instantanément. On
peut donc considérer que les transferts de chaleur n’ont pas le temps de s’effectuer Q = 0. De
même, la transformation s’effectue à volume constant W = 0. Les enthalpies de vaporisation
et de fusion peuvent être négligées, c’est à dire qu’on ne considère pas les contributions
énergétiques liées au changement d’état 4 Le premier principe de la thermodynamique, appliqué

4. Les enthalpies liées au changement d’état n’ont pas été abordées en cours et ne sont pas au programme du
test de présélection français à destination des terminales.
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au système eau + magma, macroscopiquement au repos s’écrit donc :

∆U = 0

Par extensivité de l’énergie interne, on peut écrire :

∆Ueau +∆Umagma = 0

On note Te la température d’équilibre. D’après la première loi de Joule, nous pouvons écrire :

Cvwmw(Te − Tw) + Cvmmm(Te − Tm) = 0 ⇐⇒ Te =
CvmmmTm + CvwmwTw

Cvwmw + Cvmmm

2. En considérant le mélange eau+magma comme un gaz parfait, on peut considérer
l’équation d’état suivante :

PV = nRT

En introduisant le volume molaire du mélange, on obtient :

Pve = RTe ⇐⇒ P =
RTe

ve

3. Dans cette dernière question, nous allons utiliser l’analyse dimensionnelle 5.
D’après les dépendances proposées, on cherche une expression de la forme :

v = kpαV βmγ

où k est une constante sans dimension et les exposants sont à déterminer.
On connaît la dimension de la vitesse : [v] = L.T−1. Pour le volume : [V ] = L−3. Pour la

masse : [m] = M
Pour la pression, nous pouvons utiliser la définition à partir de la force pressante :

[P ] =
[F ]

[S]
=

[F ]

L2

Pour exprimer la dimension de la force, on utilise la deuxième loi de Newton 6.

[ma] = [F ] ⇐⇒ [F ] = M.L.T−2

Ainsi, la pression a pour dimension :

[P ] = M.L−1.T−2


0 = α+ γ (M)
1 = −α+ 3β (L)
−1 = −2α (T)

⇐⇒


α = 1

2

γ = −1
2

3β = 1 + α = 3
2

⇐⇒


α = 1

2

β = 1
2

δ = −1
2

Ainsi, la vitesse du gaz s’exprime comme :

v = k

√
pV

m
5. Voir le cours de physique nucléaire pour une introduction à l’analyse dimensionnelle
6. Cette loi sera étudiée dans le premier cours de mécanique
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3 Gaz parfait

Exercice 10 : Equilibre d’une montgolfière

Une montgolfière est immobile dans l’atmosphère si et seulement si la somme des forces qui
s’exercent sur elle est vectoriellement nulle. La montgolfière est soumise à deux interactions :
son poids et la poussée d’Archimède.

Le poids de la montgolfière s’écrit :

−→
P = mtot

−→g +mgaz chaud
−→g

La poussée d’Archimède est égale à l’opposé du poids du fluide déplacé.

−→
Π = −mgaz froid

−→g

Le principe d’inertie s’écrit donc :

mtot
−→g +mgaz chaud

−→g −mgaz froid
−→g =

−→
0 ⇐⇒ mtot = Venveloppe(ρfroid − ρchaud)

On utilise à présent la loi des gaz parfaits :

ρ =
m

V
=

Mn

V
=

MP

RT

Ainsi :
mtot = Venveloppe(ρfroid − ρchaud) =

VMP

R
(
1

θ0
− 1

Tc
)

où Tc est la température de l’air à l’intérieur de l’enveloppe.
On en déduit :

mtotR

VMP
= (

1

θ0
− 1

Tc
) ⇐⇒ Tc =

θ0VMP

mtotRθ0 + VMP

A.N.
= 357K

Exercice 11 : Equation d’état des gaz non parfaits (adapté des IPhO 2014)

1. La modélisation d’un gaz parfait fait intervenir des molécules ponctuelles, c’est à dire
sans volume propre. Or, ce fait n’est pas physique. Il faut donc introduire dans la nouvelle
expression que le volume laissé libre au gaz n’est pas l’intégralité du volume, mais le volume
libre des autres molécules. Ainsi, le paramètre b est environ égal au volume des molécules.
Pour une mole de gaz, cela s’écrit donc :

b = NAd
3

2. L’équation d’état du gaz de Van der Waals dans le cas où VG ≫ b s’écrit :

(p0 +
a

V 2
G

)VG = RT

Les solutions de cette équations sont :

VG =
RT

2p0
(1±

√
1− 4ap0

R2T 2
)
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La plus petite des racines peut être oubliée, on ne conserve que la plus grande sinon le volume
donné serait instable.

VG =
RT

2p0
(1 +

√
1− 4ap0

R2T 2
) ≈ RT

p0
(1− ap0

R2T 2
) =

RT

p0
− a

RT
7

3. Pour un gaz parfait,

VG0 =
RT

p0

D’où :
∆VG

VG0
=

1

2
(1−

√
1− 4ap0

R2T 2
) ≈ ap0

R2T 2

4. En utilisant l’inégalité P ≪ a
V 2 , l’équation de Van der Waals devient

a

V 2
L

(VL − b) = RT

Les solutions de cette équation deviennent :

VL =
a

2RT
(1±

√
1− 4bRT

a
)

Pour choisir entre + et -, on utilise notre sens physique. Le volume d’une mole de liquide
devrait être d’autant plus grand que b est grand, puisque les molécules occuperaient alors un
plus grand volume propre. On en déduit donc :

VL ≈ b(1 +
bRT

a
)

5. La masse volumique s’écrit :

ρL =
µ

VL
=

µ

b(1 + bRT
a )

≈ µ

b

5. Pour le coefficient α :
α =

1

VL

∆VL

∆T
=

bR

a+ bRT
≈ bR

a

Exercice 12 : Démonstration de l’équation d’état du gaz parfait

1. On utilise la relation donnée par l’énoncé

3

2
kBT =< Ec >

3

2
kBT =

1

2
mv20

v0 =

√
3kBT

m

2.

7. Ici on utilise un développement limité, ce qui sera découvert dans le cours des oscillateurs harmoniques. Il
s’agit d’une approximation de

√
1 + x ≈ 1 + x

2
dans la limite où x est petit.
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S

v0dt

3. Ce volume vaut dV = v0dt×S. La répartition des molécules est uniforme, dans ce volume
il y a donc dN = N dV

V molécules (proportionnel au volume considéré, et valant N si l’on
considère tout le volume). Et dans ce volume, 1

6 des molécules vont dans la bonne direction.
Le nombre de molécules rentrant en contact avec la paroi pendant la durée dt est donc :

1

6
dN =

1

6

v0Sdt

N

4. Une molécule de ce volume a, en arrivant sur la paroi, une quantité de mouvement
pavant = mv0, et après le choc paprès = −mv0. La variation de quantité de mouvement d’une
molécule est donc mv0 − (−mv0) = 2mv0. La variation de quantité de mouvement de l’ensemble
des molécules dans le volume considéré vaut donc :

dp = 2mv0 × Nombre de particules dans le volume = 2mv0
1

6

NSv0dt

V

dp

dt
= F = 2mv0

1

6

NSv0
V

5. Donc, la pression étant la force par unité de surface :

P =
F

S
=

1

3

mv20N

V
=

1

3

3kBT

m

mN

V
=

NkBT

V

PV = NkBT =
N

NA
NAkBT = nRT

Exercice 13 : Gaz de photons

On va suivre la même démarche que dans l’exercice précédent. On regarde ce qu’il se passe
entre t et t+ dt. On considère une fraction de la paroi, de surface S. Le volume dans lequel se
trouvent les photons qui vont entrer en collision avec la paroi pendant cet intervalle de temps
est :

S

cdt
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dV = Scdt

Dans ce volume il y a N dV
V photons, et 1

6 d’entre eux vont dans la bonne direction, il y a
donc

dN =
1

6

NdV

V
=

1

6

NScdt

V

photons qui entreront en collision avec la paroi entre t et t+ dt. Un photon a une quantité de
mouvement avant le choc pavant =

h
λ , et après le choc paprès = −h

λ . Donc la variation de quantité
de mouvement d’un photon vaut h

λ − (−h
λ) = 2h

λ . Donc la variation de quantité de mouvement
des dN photons concernés vaut :

dp = 2
h

λ
dN

On a donc :
P =

1

S
F =

1

S

dp

dt
=

2h

λ

1

6

Nc

V
=

1

3

1

V

Nhc

λ

On reconnait hc
λ , l’énergie d’un photon. Donc Nhc

λ = U , l’énergie totale. On obtient alors :

P =
1

3

U

V

Cette relation, avec un peu de thermodynamique, permet de retrouver la loi de Stefan-
Boltzmann (par exemple en faisant suivre aux photons un cycle de Carnot).

4 Transferts thermiques

Exercice 14 : Chauffe-eau solaire

1. Les pertes sont d’origine conducto-convectives, entre x et x + dx elles sont donc
localement de la forme :

dPpertes = αdS(T (x)− T0)

Avec α le coefficient de transfert conducto-convectif, et dS la surface infinitésimale considérée.
Un peu de géométrie nous permet de dire que la portion de surface comprise entre x et x+ dx
est de largeur dx et de longueur b. Ainsi :

dPpertes = αb(T (x)− T0)dx

Pour ce qui est du signe, on raisonne qualitativement. Si le chauffe-eau est plus chaud que
l’air environnant, il perd de l’énergie, les pertes sont donc positives.

2. On considère l’eau contenue entre les abscisses x et x+ dx. La masse de l’eau contenue
dans ce système vaut ρSdx (masse volumique ρ dans un volume Sdx, avec S la section du
tuyau). La variation d’énergie interne entre t et t+ dt de ce système vaut

dU = ρSdxcp(T (t+ dt)− T (t)) = ρSdxcp(T (t+ dt)− T0 − (T (t)− T0)) = ρSdxcpdθ

L’énergie reçue par le système dûe au rayonnement solaire s’écrit :

δQ1 = Ebdxdt
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(une surface bdx reçoit une puissance par unité de surface E, l’énergie est donc la puissance
fois le temps). L’énergie reçue par le système dûe aux transferts conducto-convectifs s’écrit :

δQ2 = −dPpertesdt = −αb(T (x)− T0)dxdt = −αbθ(x)dxdt

On applique le premier principe de la thermodynamique à ce système (aucune force ne
travaille) :

dU = δQ1 + δQ2

ρSdxcpdθ = Ebdxdt− αbθ(x)dxdt

ρScp
dθ

dt
= Eb− αbθ(x)

Il faut maintenant passer d’une dérivée temporelle à une dérivée spatiale. Entre t et t + dt,
passe une masse d’eau dm = Dmdt entre x et x+ dx. Cette quantité d’eau occupe un volume
Sdx. Donc dm = ρSdx = Dmdt. On obtient donc dt = ρS

Dm
dx. On réinjecte ceci dans l’équation

différentielle et on obtient :
cpDm

dθ

dx
= Eb− αbθ(x)

3. On met cette équation sous forme canonique :

dθ

dx
+

αb

cpDm
θ =

Eb

cpDm

On pose L =
cpDm

αb , et θ∞ = E
α , et on obtient alors :

dθ

dx
+

θ

L
=

θ∞
L

Pour résoudre cette équation différentielle, on résout d’abord l’équation homogène associée :

dθ

dx
+

θ

L
= 0

Cette dernière admet pour solution θh(x) = λe−x/L. On trouve ensuite une solution particulière.
Le second membre est constant, on cherche donc une solution constante, cela donne θp = θ∞.
Finalement :

θ(x) = θh + θp = λe−x/L + θ∞

On trouve λ avec la condition initiale : θ(x = 0) = λ+θ∞ = T1−T0, λ = T1−T0−θ∞ = T1−(θ∞+T0) =
T1 − T∞. Cela donne en fin de compte :

θ(x) = (T1 − T∞)e−x/L + θ∞

Pour s’assurer que l’eau chauffe autant que possible, on peut choisir une longueur totale du
tuyau de quelques fois L. Par exemple 4, car e−4 ≈ 0.02 ≪ 1.

Il est préférable de placer l’ensemble sous une vitre transparente car une vitre laisse passer
la lumière, donc la source d’énergie, mais empêche le contact entre l’air à l’intérieur et l’air à
l’extérieur, ce qui diminue les pertes par conducto-convection, augmentant la température
finale et diminuant la longueur de tuyau nécessaire.

Exercice 15 : Équation de la chaleur

1. La présence du moins indique que si ∂T
∂x > 0, c’est-à-dire si la température est plus

importante à droite qu’à gauche, alors l’énergie va de la droite vers la gauche : l’énergie va du
plus chaud au plus froid. Cela semble naturel.
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2. L’énergie interne dU de la section infinitésimale varie entre t et t+ dt, donc la variation
de dU variation de dU vaut :

dU(x, t+ dt)− dU(x, t)

Par ailleurs, la puissance fournie au système à gauche par les transferts thermiques vaut, par
définition de jQ :

Pgauche = SjQ(x, t)

Pour ce qui est de la droite, jQ étant orienté de la gauche vers la droite, la puissance reçue
par le système à droite vaut

Pdroite = −SjQ(x+ dx, t)

Donc, le transfert thermique étant la puissance fois le temps :

δ2Q = (Pgauche + Pdroite)dt

On applique ensuite le premier principe de la thermodynamique au système considéré, et on
obtient, sachant qu’aucune force ne travaille :

dU(x, t+ dt)− dU(x, t) = S(jQ(x, t)− jQ(x+ dx, t))dt

3. On considère un problème où la température n’est pas uniforme. C’est pour cela qu’on
fait appel à des infinitésimaux ; si le système est suffisamment petit, on peut considérer
la température de ce système uniforme. Cela permet d’écrire que l’énergie dU du système
considéré vaut, au temps t :

dU(x, t) = dm× c× T (x, t) = ρScdxT (x, t)

La capacité thermique étant la capacité thermique massique fois la masse du système.

4. On revient donc au calcul de chacun des termes de l’écriture du premier principe. Le
terme de gauche devient :

dU(x, t+ dt)− dU(x, t) = ρSc(T (x, t+ dt)− T (x, t))dx = ρSc
∂T

∂t
(x, t)dxdt

Le terme de droite vaut, en utilisant la loi de Fourier :

S(jQ(x, t)− jQ(x+ dx, t))dt = Sλ
(∂T
∂x

(x+ dx, t)− ∂T

∂x
(x, t)

)
dt = Sλ

∂2T

∂x2
(x, t)dxdt

On obtient finalement :
ρSc

∂T

∂t
(x, t)dxdt = Sλ

∂2T

∂x2
(x, t)dxdt

ρc
∂T

∂t
= λ

∂2T

∂x2

5. L’équation de la chaleur devient :

∂T

∂t
= D

∂2T

∂x2

Ce qui nous donne les homogénéités de [D] = L2.T−1. On peut donc construire une distance
typique L telle que D = L2

t .
L =

√
Dt
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6. Si un état stationnaire est atteint, T ne varie plus dans le temps, donc n’est plus une
fonction de t. Sa dérivée partielle par rapport à t s’annule donc, et l’équation de la chaleur
devient :

0 = D
d2T

dx2

d2T

dx2
= 0

On primitive :
dT

dx
= A

Avec A une constante. On primitive à nouveau :

T (x) = Ax+B

Avec B une autre constante. Les solutions sont donc bien affines de x.

7. On sait donc qu’il existe deux constantes A et B telles que T (x) = Ax+B. La température
est continue de l’espace. En effet, le flux d’énergie (jQ) est continu, ce qui impose la continuité
de ∂T

dx , donc en particulier de T par rapport à x. Cela nous donne comme conditions :{
T (x = 0) =T1

T (x = L) =T2{
A× 0+B =T1

A× L+B =T2B = T1

A =
T2 − T1

L

Finalement :

T (x) = (T2 − T1)
x

L
+ T1

Exercice 16 : Cuire un œuf dur (IPhOs 2006)

1. Tout l’œuf doit être amené à la température de coagulation. L’énergie minimum nécessaire
est donc :

∆U = Ctot∆T

Avec Ctot = mC = µV C = µ4
3πR

3C

∆U =
4

3
πµR3C(Tc − T0) ≈ 1.7× 104J

2. L’eau est bouillante, donc T1 = 100◦C On utilise la loi de Fourier pour affirmer que

j = κ
T1 − T0

R
≈ 2.5× 103Wm−2

3. Par définition de j, la puissance transmise à l’œuf vaut :

P = jS = 4πR2J = 4πκR(T1 − T0) ≈ 19W
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4. En ordres de grandeur, l’énergie vaut la puissance fois le temps, donc le temps typique τ
de cuisson vaut :

τ =
U

P
=

µCR2

3κ

Tc − T0

T1 − T0
≈ 15min

C’est bien l’ordre de grandeur du temps de cuisson d’un œuf dur.

5 Problème : le thermophone à tube à essai (adapté du test de présé-
lection des IPhO 2025

1. La relation liant la célérité, la fréquence et la longueur d’onde s’écrit :

c = λf 8

.
Or ω = 2π

T = 2πf et k = 2π
λ .

Ainsi :
ω = kc

2. Les forces de pressions s’écrivent :

— à gauche, sur la paroi en x : p(x, t)dS−→ux
— à droite, sur la paroi en x+ dx = −p(x+ dx, t)dS−→ux
3. On utilise ici la seconde loi de Newton qui sera (re)vue en cours de mécanique.

m−→a =
∑−→

F

Ici, on projette cette relation sur l’axe −→ux. On obtient :

max = (p(x, t)− p(x+ dx, t))dS

On peut approximer la différence dans le second membre comme le numérateur d’un nombre
dérivé :

max = −∂p

∂x
dxdS

Le symbole ∂ est utilisé pour signifier qu’on prend la dérivée (usuelle) par rapport à une
variable (x) spatiale d’une fonction qui dépend de plusieurs variables (espace et temps).

Pour l’accélération, le déplacement de la masse est donnée par ξ donc :

m
∂2ξ

∂t2
= −∂p

∂x
dxdS

Pour la masse, nous avons envie de l’exprimer à partir du volume dxdS et de la masse
volumique. Le problème est que la masse volumique varie selon x. On utilise l’approximation
donnée dans le texte que la masse volumique peut, relativement aux autres variations, être
considérée comme constante.

Ainsi :
ρ0dxdS

∂2ξ

∂t2
= −∂p

∂x
dxdS

8. Cette relation peut être retrouvée à partir des dimensions et de la "célèbre" formule apprise au collège
v = distance

temps
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On simplifie ensuite l’expression pour obtenir le résultat attendu.
Ainsi :

ρ0
∂2ξ

∂t2
= −∂p

∂x

4. On utilise les expressions données pour la pression et le déplacement longitudinal.

−ρ0ξm sin(kx)ω2 cos(ωt) = −pmk(− sin(kx)) cos(ωt) ⇐⇒ ξm =
−pmk

ρ0ω2
=

−pmk

ρ0c2k2
=

−pm
ρ0c2k

5. On suppose que la surpression acoustique est nulle en x = L. Ainsi, on en déduit :

p(L, t) = 0 ⇐⇒ pm cos(kL) cos(ωt) = 0 ⇐⇒ cos(kL) = 0 ⇐= kL = (2n+ 1)
π

2
⇐⇒ k = (2n+ 1)

π

2L

6. Le spectre de fréquence comporte plusieurs pics identifiables. Le pic de plus haute
intensité et de plus basse fréquence non nulle est appelé fondamental : 0, 66kHz. Ensuite,
plusieurs autres pics sont visibles : 1, 3kHz, 1, 95kHz, 3, 25kHz et 3, 92kHz.

Or, on sait que ω = 2πf = kc ⇐⇒ f = kc
2π = (2n+1)πc

4πL = (2n+1)c
4L .

7. Ainsi, la fréquence fondamentale f0 =
c
4L . On peut donc en déduire la valeur de c = 4Lf0.

Une autre méthode est de considérée l’espacement entre deux fréquences

fn+1 − fn =
(2(n+ 1) + 1)c

4L
− (2n+ 1)c

4L
=

2c

4L
=

c

2L

On peut donc en déduire la valeur de c de deux façons. Pour être le plus précis possible,
on devrait privilégier l’espacement entre les fréquences, car on dispose d’un jeu de données
important et on peut effectuer une moyenne des mesures. En revanche, on observe que
l’espacement n’est pas toujours régulier et qu’il y a des artefacts dus aux mesures.

La valeur numérique est proche de celle attendue.
8.
Le déplacement acoustique au centre du stack est :

ξ(xs, t) = ξm sin(kxs) cos(ωt), kxs =
π

4
.

Or sin(π/4) = 1/
√
2, donc l’amplitude maximale vaut :

ξmax =
ξm√
2
.

Les positions extrêmes sont alors :

x23 = xs +
ξm√
2
, x41 = xs −

ξm√
2
.

9.
Le profil de température du stack est :

Ts(x) = T0 +∇Ts (xs − x).

En évaluant en x41 et x23 :

Ts,41 = T0 +∇Ts
ξm√
2
, Ts,23 = T0 −∇Ts

ξm√
2
.
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10. La température acoustique locale vaut :

T (xs, t) = T0 − τm cos(kxs) cos(ωt), cos(kxs) =
1√
2
.

Aux extrémités du mouvement rapide :
- Fin de la phase 1 → 2 (cosωt = +1) :

T2 = T0 −
τm√
2
.

- Fin de la phase 3 → 4 (cosωt = −1) :

T4 = T0 +
τm√
2
.

Ainsi :
T2 = T0 −

τm√
2
, T4 = T0 +

τm√
2
.

11 Pour que le cycle fournisse un travail net au fluide, il faut que la particule :
- reçoive de la chaleur au point chaud, donc T4 < Ts,41, - cède de la chaleur au point froid,

donc T2 > Ts,23.
En utilisant les résultats des questions précédentes :

T4 < Ts,41 =⇒ T0 +
τm√
2
< T0 +∇Ts

ξm√
2
,

T2 > Ts,23 =⇒ T0 −
τm√
2
> T0 −∇Ts

ξm√
2
.

Dans les deux cas, on obtient la même condition :

∇Ts >
τm
ξm

.

Cette inégalité est la condition d’amplification thermoacoustique : le gradient thermique
imposé par le stack doit dépasser un seuil critique pour permettre une conversion nette de
chaleur en travail acoustique.

Préparation aux olympiades – version 2025-26 – contributeur·ice·s : Loïse Launay, Mathurin Rouan
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