IPhO : Thermodynamique
(corrections)

O Physicité

1 Capacité thermique

Exercice 1: Barre d’acier (Test de présélection 2025)

Afin d’amener ’eau a ébullition, en supposant que le systéme est étudié sous la pression
atmosphérique, il faut amener l'eau a 100°C.

On considere le systéeme constitué de l’eau, du calorimeétre et de lacier. A ’équilibre, ce
systeme a une température T,,. La condition est donc que T,, = 100°C.

Comme ce systéme est isolé et qu’on considere le calorimetre parfait (c’est a dire que le
changement de température de ces parois ne demande qu’une énergie négligeable devant
celles considérées’), le premier principe s’écrit :

AE =0

Comme le systéme est macroscopiquement au repose (on ne considere pas de mouvement du
calorimeétre),
AU =0

Or, par extensivité des quantités considérées?, on obtient :

AUcaloMmetre + AUveau + AUacier =0
Comme le calorimetre est parfait :
Aljeau + AUacier =0
On utilise ensuite la loi de Joule appliquée a chacun des constituants :

CeauMeau(Teq — Oamb) AN. . o
CeauMMeau (Teq - eamb) + CacierMacier (Teq - Enz) =0T = Teq + oo eau( 4 i ) ='694°C

CacierMacier

Réponse 4.

Exercice 2 : Boisson fraiche (Test de présélection 2024)

Le systéme considéré est le jus de fruit et les N glagons ajoutés, ou N est l'inconnue du
probleme.
Comme le systéme est isolé et macroscopiquement au repos, le premier principe s’écrit :

AU =0
Par extensivité de U’énergie interne :

NAUglacon + A[]eam =0

1. Vous avez peut-étre déja entendu la notion de masse en eau d’un calorimétre. Cela correspond a la masse
d’eau a réchauffer équivalente au colt énergétique de réchauffement ds parois du calorimetre. Elle est généralement
de lordre de 20 a 30 g pour les calorimeétres de travaux pratiques et peut généralement étre négligée. C’est le
modeéle du calorimeétre idéal qui est généralement utilisé dans les exercices sans précision supplémentaires.

2. Cela signifie qu’on peut sommer les contributions énergétiques de chacun des sous-systémes.
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O Physicité IPhO : Thermodynamique (corrections)

Du fait de la fonte du glacon, une énergie supplémentaire est absorbée par le systéme?3
Ainsi, d’aprés lecture de I’énoncé, en notant Ty = 0°C, Ty = 10°C :

AUvglacon = Ceau‘/glacepglace (Tf - TO) - qulacepglace

Comme les glagons absorbent de U’énergie lors de la fusion, leur énergie finale est plus élevée
que l’énergie initiale, c’est ce qui explique le signe -. Soit, en notant 7; = 30°C :

LN (T =T3) Mgy = 0

Cean

Nvglacepglace (Ceau (Tf_TO)_Q)+Ceaumeau (Tf_ﬂ) =0+ NVglacepglace (Tf_TO_

Ainsi, le nombre de glacons s’exprime comme :

meau(Tf - 7—‘7,) A.:N. 2
‘/glacepgl(zce(_Tf + 1o+ 1 )

Ceau

N =

Réponse 1.

Exercice 3 : A la douche

Cet exercice traite d’'un systéme ouvert puisque l’eau arrive en continu. Des outils plus
pertinents seront introduits en études supérieures. Pour linstant, nous nous contentons de
considérer deux masses d’eau qui arrive au niveau du mélangeur pendant une durée At. Ces
masses sont respectivement D.At et DfA ou D, et D; sont les débits massiques d’eau chaude
et d’eau froide. Le débit d’eau tiéde est égal a la somme des débits, ainsi la masse d’eau tiede
est egale a (D. + Dy)At.

Le premier principe appliqué a ce systéme isolé, en négligeant ’énergie cinétique de
déplacement macroscopique du fluide :

D. 0;-0
AU = 0 <= D A0 — 0.) + Dy At(0; — ) =0 <= —° = f— Yt
Dy 60, —0,
On a noté 0§, = 35°C.
On en déduit
D._%
Dy 25

Les deux débits sont identiques.

2 Premier principe de la thermodynamique

Exercice 4 : Chute d’lguazu

On utilise le premier principe de la thermodynamique appliqué au systeme goutte que l'on
suppose isolé. On néglige ainsi les transferts thermiques et les frottements.
AE =0

IL faut veiller ici a prendre en compte l’énergie macroscopique, l’énergie potentielle de
pesanteur.

g A.N. o
MCequ (Tbas - Thaut) + mg(zhaut - Zbas) =0 <= Thas — Thaut = 7(Zhaut - Zbas) ="0,190°C

eau

3. C’est ce qu’on appelle la chaleur latente de fusion. Tous les changements d’état libérent ou nécessitent de
’énergie. Cette notion sera entiérement décrite dans les études supérieures.
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O Physicité IPhO : Thermodynamique (corrections)

Exercice 5 : Frottement des mains

On utilise le premier principe de la thermodynamique appliqué a ’épiderme. La variation de
son énergie interne s’écrit cATeSp tandis que le travail lié a la force de frottement est égal a
W = PAt. En 'absence de transfert thermique, on obtient :

PAL
AN 9o

AU =W <= cATeSp = PAt <= AT =
ceSp

Exercice 6 : Whisky "on the rocks"

1. La variation d’énergie interne sur une durée dt est la capacité thermique fois la variation
de température sur cette durée :

dU = C(T(t + dt) — T(t)) = CdT

La capacité thermique est la masse fois la capacité thermique massique. La masse est la
masse volumique fois le volume :
dU = paedT

2. On applique le premier principe de la thermodynamique entre ¢t et t + dt :
dU =06Q + oW

Ici W = 0, aucune force ne travaille dans le systeme, et les seuls transferts thermiques ayant
lieu sont d’origine conducto-convective. On utilise donc la loi de Newton pour affirmer que

6Q = hS(Ty — T)dt = 6ha®(Ty — T)dt

Car la surface extérieure S d’un cube est 6 fois celle d’une face. Pour savoir quel signe mettre,
on raisonne qualitativement : si 77 > T, U'extérieur est plus chaud que la pierre, la pierre regoit
donc de ’énergie, 6Q < 0. Finalement :

dU = 6ha*(Ty — T)dt
3. 0On a alors :
pa’cdT = 6ha?(Ty — T)dt
dT'"  6h
dt  ca
On pose donc 7 = ¢ et T, = T et on obtient, comme demandé :

(Th = T)

ATl T Tw
— 4 - ===
dt T T
4. On résout d’abord l’équation homogene associée :

ar T

— 4+ —=0
dt+T

De solution Tj,(t) = Xe™ /7.
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On trouve ensuite une solution particuliere. Elle doit étre de la forme du second membre,
c’est-a-dire constante, on doit donc avoir :

T, T
’T_T
T, =T

Finalement, T(t) = Ty(t) + T, = Xe™¥7 + T;. On trouve \ en utilisant la condition initiale :
T(t=0) =Ty, A\+T1 =Tp. Ce qui donne :

T@t) = (Ty — TV)e ™ + Ty

Il est rassurant de voir que la température du bloc va décroitre et se rapprocher indéfiniment
de la température du congélateur.

Exercice 7 : L’effet de serre (adapté des IPhO 2024)

1. On considére que le Soleil émet un rayonnement isotropique, identique dans toutes
les directions de l'espace. Ainsi, la puissance émise par la surface du Soleil se répartit, a
une distance R du centre du Soleil sur une sphére d’aire 4rR?. Ainsi, au niveau de la surface
terrestre, on considere R = drs.

g 0T§471'R?q B UTéR%
7 TandZg T A2

2. Par définition, Sy correspond a la puissance surfacique regue au niveau de la terre, sur
une surface normale. Or la surface normale pour la Terre vaut 7R2 alors que cette méme
puissance solaire se répartit sur la sphére d’aire 47R2. Si on nomme S, la puissance surfacique
effectivement recue par la Terre, on obtient donc :

TR2Sy = ATR%S «— S = %

3. On suppose € = 1 et rg = 0. On effectue deux bilans énergétiques. Le premier est fait sur
’atmosphere, le second sur la Terre. Pour latmosphere :

oTpdrRY, = 2(47R%)0T]

Le facteur 2 est d( au fait que 'atmosphere émet dans les deux directions, a la fois vers le
haut et vers le bas. Pour la Terre :

TR%(1 —14)So + (4nR%)oT} = (47R%)oTh

1—ry So 1
TA:((U)ZL)LL

Ty = (2T4)1

4. Une partie (1 — r4) de la radiation solaire qui atteint la surface de la Terre traverse
’atmosphére. Une fraction rz de cette radiation est reflétée et atteint a nouveau 'atmosphere
ou une fraction r4 est reflétée et retourne a la surface de la Terre. Ce processus se répete a
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Linfini. La somme des puissances transmises détermine alors 'albedo. On note s, la puissance
qui retourne dans l’espace apres n réflexions.

S0 ZITASb

1—1ry 2
s1=(1—7ra)’rpSo = d=ra? o ) TESO

Plus généralement,
Sn—1
Sp =

a 1—1ry

rarp(l—ra) =rarpsp—1
On reconnalt une suite géomeétrique :
Sp = (rarg)” ls;
On veut sommer tous les termes pour obtenir la puissance totale :

- - 1 (1 —74)%r
5= an =50+ 51 Z(TATE)nfl =1raS50+ (1 — TA)27’ES()7 = So(ra + AR
n=0 n=1

1—ryrg 1 —rarg

L’albedo est alors défini comme a = &~ =ra+ % 5. A nouveau, a ’équilibre thermique,

les puissances entrantes et sortantes doivent étre identiques. radiation solaire absorbée :
oTpdnR%e = 2(4nR%) 0T ke

TR%L(1 —14)So + (4nR%)oThe = (4nR%)oTh

Nous en déduisons les nouvelles valeurs des températures :

1—a 1
Tp=(—— 2 )i
E (20'(2—6)50)4

4

6. On dérive l’expression de la température d’équilibre :

=1

Sa dérivée par rapport a € vaut :

dTp 1 [(1—@&;]”‘*( 1

de 4 |20(2—¢ 2—¢)

Ainsi, la variation est :

0TE =

dTg 40T} Tg
= —1| =Z x 0.01.
de © [(1—a)50 } p 100

7.Le bilan d’énergie pour la Terre devient :
(rR%)(1 — a)Sp + (4rR%)eoTh = (4nR%)oTs + (4nRL)k(Tp — Ta),
et pour latmosphere :

(4rR%)eo T + (4rRE) k(T — Ta) = 2(47R%)eo T,
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8.0n prend le logarithme des expressions de ¢ et k :

(1 — Oz)S()

T —Ino —In(Tg — T4),

Ine =1In|oTh —

Ink =1Ine+Ino+ (274 — Tp) — In(Tg — Ta).

En dérivant, on obtient le systeme :

1_ 4oT3 ATy AT} dTy 4T} dTq
5 aTg—% de  TE—T% de  Tp—T4% de’
oL 8T%  dTy ATE  dTg 1 dTy  dTy
e 2T{-Th de 214 T} d= Tp—Ta\ de de )’
La résolution du systeme donne :
4 4 TH-T% 873 1
ATy [o(T; — T3] [1 + - (ng—ATg + TEfTA)}
de T ) oT4—1=2)50 (Tl)3 [ Ly } '
Tp—Ta ' 2T4-T% oTh— 1=2)50 Ta 274 -TE ' Tp—Ta

1 AT? dT 873 1 dT
£< AR— ) E:1+e< A+ ) 4

T —Ta 2T -TL) de 214 — T}  Tg—Ta) de’
AT, 40T} dTg ATS  dTy
brelpr—pr - 1—a)S | | de ~ Thi—T%  de
E 4

Exercice 8 : Température du Soleil sans réaction thermonucléaire

1.0na: v
_ mime
- YT

On remarque que %( - l) = 5. On peut donc prendre, a une constante prés,

V(r)= -G

r

2. Initialement, chaque particule est infiniment éloignée des autres, donc V5 = 0. Quand
’étoile est formeée, le potentiel V compte toutes les interactions de particules formant
ensemble une masse Mg, sur une distance typique Rg. Les masses mises en jeu dans le total
de linteraction sont de Uordre de Mg, et elles ont lieu sur des distances typiques de l'ordre de
Rg. Le potentiel total doit donc étre du méme ordre de grandeur que le potentiel d’interaction

r2

entre deux objets de masse Mg séparés par une distance Rg. Ainsi, 1} ~ —Ggés. Finalement :
M2
AE,=Vi— Vo~ — —5
Rg

Si on faisait le calcul exact (soit en faisant un calcul d’intégrales, soit avec le théoréme de

Gauss), on trouverait AE), = — 394,
S
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O Physicité IPhO : Thermodynamique (corrections)

3. En s’agrégeant, le nuage a perdu de l’énergie potentielle. Comme pour ’énergie potentielle
de pesanteur que vous connaissez dans le cas d’'un champ uniforme, E, = mgz, on tendance a
aller vers le bas, donc a faire diminuer son énergie potentielle quand on est attiré par une
force attractive. C’est exactement ce qui se passe la, les particules ont été attirées par la
force attractive qu’est la gravitation, elles ont donc perdu de l’énergie potentielle.

4. La variation d’énergie interne est la capacité thermique fois la variation de température.
La capacité thermique est la masse fois la capacité thermique massique. On a donc :

AU = CMgAT
5. On applique le premier principe de la thermodynamique au gaz :
AU+ AE,=Q+ W

Aucune force ne travaille (a part la gravité, mais elle est comprise dans ’énergie potentielle). Il
n’y a pas de transfert thermique car, si 'on néglige le rayonnement, le systeme est isolé. On
néglige toutes les autres interactions, donc ’énergie potentielle est uniquement celle associée
a linteraction gravitationnelle. On obtient alors :

M2
CMs(Ts —0) — GMs _
S
GMg
T =
%~ CRs

6. Il faut bien faire attention a mettre la masse molaire en unités Sl, pour que ce soit
homogéne avec la masse et avec G : My = 1.0g/mol = 1.0 x 10~3kg/mol. Avec cela : Ts ~
2.3 x 10’K ~ 1.5 x 10"K. Donc on retrouve une estimation correcte de la température du Soleil.
L’effondrement gravitationnel de ’étoile peut donc expliquer sa température initiale. Mais
si 'on ne prend en compte que linteraction gravitationnelle, on ne peut pas expliquer que
’étoile vive aussi longtemps qu’elles le font. En effet a cette température, [’étoile rayonne une
puissance P = 47rR%aT§, d’apres la loi de Stefan-Boltzmann. Cela veut dire qu’elle va perdre
son énergie en un temps typique 7 vérifiant % ~P. 7~ RC;]Z% ~ 5 x 10's, ce qui est absurde.
On a donc envie de conclure que la gravitation ne peut pas Sétrsé la seule source d’énergie pour
une étoile. Mais bien s(r, ce chiffre est grandement sous-estimé puisque se met en place au
sein du Soleil un gradient de température, ce qui fait que la température en surface n’est pas
du tout celle du ceceur de ’étoile. Il faudrait, pour démontrer ce que 'on cherche a démontrer,
faire une estimation du profil de température, pour relier la température au cceur de 'étoile a
celle en surface. On pourrait alors calculer un temps typique de disparition de [’étoile dans un
modeéle sans réactions thermonucléaires, et on verrait bien que celui-ci serait beaucoup trop
court par rapport a la durée de vie de notre Soleil.

Exercice 9 : Eruption du volcan Mérapi (adapté de ’épreuve des IPhO 2017

1. Dans la premiere phase, ’équilibre thermique est atteint presque instantanément. On
peut donc considérer que les transferts de chaleur n’ont pas le temps de s’effectuer Q = 0. De
meéme, la transformation s’effectue a volume constant W = 0. Les enthalpies de vaporisation
et de fusion peuvent étre négligées, c’est a dire qu’on ne considére pas les contributions
énergétiques liées au changement d’état* Le premier principe de la thermodynamique, appliqué

4. Les enthalpies liées au changement d’état n’ont pas été abordées en cours et ne sont pas au programme du
test de présélection frangais a destination des terminales.
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au systéme eau + magma, macroscopiquement au repos s’écrit donc :

AU =0

Par extensivité de U’énergie interne, on peut écrire :
AUeau + AUvmagma =0
On note T, la température d’équilibre. D’apres la premiere loi de Joule, nous pouvons écrire :

ComMn T + Cowmayw T,
Cowmy(Te — Tw) + Commum(Te = Tp,) =0 <= T, = mng%;Jr C::jm: -

2. En considérant le mélange eau+magma comme un gaz parfait, on peut considérer

’équation d’état suivante :

PV =nRT
En introduisant le volume molaire du mélange, on obtient :
RT,
Py, =RT, <= P =—"°
Ve

3. Dans cette derniére question, nous allons utiliser l’analyse dimensionnelle ®.
D’apres les dépendances proposées, on cherche une expression de la forme :

v = kp*Vim?

ou k est une constante sans dimension et les exposants sont a déterminer.
: [v] = L.T~'. Pour le volume : [V] = L~3. Pour la

On connait la dimension de la vitesse :

masse : [m] = M
Pour la pression, nous pouvons utiliser la définition a partir de la force pressante :

P ==
57

Pour exprimer la dimension de la force, on utilise la deuxiéme loi de Newton ©.

[ma)] = [F] <= [F] = M.L.T>

Ainsi, la pression a pour dimension :
[P] = M.L71. 772

l=—a+38 (L) <= <(v=-3 = (B=3
—1=-2a (T) 3P=1+a=23 §=—1

Ainsi, la vitesse du gaz s’exprime comme :

v=~Fk v
m

5. Voir le cours de physique nucléaire pour une introduction a l’analyse dimensionnelle
6. Cette loi sera étudiée dans le premier cours de mécanique
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3 Gaz parfait

Exercice 10 : Equilibre d’une montgolfiére

Une montgolfiere est immobile dans 'latmosphere si et seulement si la somme des forces qui
s’exercent sur elle est vectoriellement nulle. La montgolfiére est soumise a deux interactions :
son poids et la poussée d’Archimede.

Le poids de la montgolfiere s’écrit :

P = Mot J + Mgaz chaud §

La poussée d’Archiméde est égale a 'opposé du poids du fluide déplacé.
ﬁ = —Mgaz froid?
Le principe d’inertie s’écrit donc :

N
mtot? + Mgaz chaud? — Mgaz froid? = 0 <= mypt = ‘/;nveloppe (pfroid - ,Ochaud)

On utilise a présent la loi des gaz parfaits :

-~ m _ Mn MP
P=V TV TR
Ainsi : P 1
Mtot = Vem}eloppe(pfroid - pchaud) = T(% — E)
ou T, est la température de l'air a lUintérieur de ’enveloppe.
On en déduit :
Mot I 1 OV MP AN.
=g —7) =T =" 357K
VMP (90 7 c

T ROy + VMP

Exercice 11 : Equation d’état des gaz non parfaits (adapté des IPhO 2014)

1. La modélisation d’un gaz parfait fait intervenir des molécules ponctuelles, c’est a dire
sans volume propre. Or, ce fait n’est pas physique. Il faut donc introduire dans la nouvelle
expression que le volume laissé libre au gaz n’est pas lintégralité du volume, mais le volume
libre des autres molécules. Ainsi, le parametre b est environ égal au volume des molécules.
Pour une mole de gaz, cela s’écrit donc :

b= Nd®

2. L’équation d’état du gaz de Van der Waals dans le cas ou Vi > b s’écrit :

a
(po + W)VG = RT
€
Les solutions de cette équations sont :
RT 4apg
Vo=—(1= —

9/18



O Physicité IPhO : Thermodynamique (corrections)

La plus petite des racines peut étre oubliée, on ne conserve que la plus grande sinon le volume
donné serait instable.

RT 4apg RT apo RT a -
Vo= ——(1+44/1- ~ 20— 4
¢ 2p0( + 7 0 (1= Zog2) »  RT

3. Pour un gaz parfait,

Voo = —
Po

AVg 1(1 i 4apo )~ apo
Voo 2 R2T2’ 7 R2T2

4. En utilisant Uinegalité P < %, 'équation de Van der Waals devient

D’ou :

a

2 (Vp —b) = RT
Vg(L )

Les solutions de cette équation deviennent :

a 4bRT
= 1+4/1—
2RT( a )

VL

Pour choisir entre + et -, on utilise notre sens physique. Le volume d’une mole de liquide
devrait étre d’autant plus grand que b est grand, puisque les molécules occuperaient alors un
plus grand volume propre. On en déduit donc :

bRT
VL ~ b(l + 7)
5. La masse volumique s’écrit :
P
Ve b+ )
5. Pour le coefficient a :
N 1 AV, bR bR

TV, AT  a+bRT =~ a

Exercice 12 : Démonstration de ’équation d’état du gaz parfait

1. On utilise la relation donnée par ’énoncé

3
3 1
3kpT
vy =
m

2.

7. Ici on utilise un développement limité, ce qui sera découvert dans le cours des oscillateurs harmoniques. Il
s’agit d’une approximation de /1 +z ~ 1+ 5 dans la limite ou z est petit.
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vodt

3. Ce volume vaut dV = vpdt x S. La répartition des molécules est uniforme, dans ce volume
il y a donc dN = NdVV molécules (proportionnel au volume considéré, et valant N si l'on
considere tout le volume). Et dans ce volume, % des molécules vont dans la bonne direction.
Le nombre de molécules rentrant en contact avec la paroi pendant la durée dt est donc :
1 U()Sdt

1
ZdN = =
6 6 N

4. Une molécule de ce volume a, en arrivant sur la paroi, une quantité de mouvement
Pavant = My, et apres le choc papes = —mup. La variation de quantité de mouvement d’une
molécule est donc mwvy — (—muy) = 2muy. La variation de quantité de mouvement de ’ensemble
des molécules dans le volume considéré vaut donc :

) 1 NSvodt
dp = 2mvg x Nombre de particules dans le volume = 2mv06%
dp 1 NSvg

X _ =9 -
dt s Ty

5. Donc, la pression étant la force par unité de surface :

F _ 1mwN 13kgTmN _ NkgT

S 3V 3 m V 1%
N

PV = NkgT = —NakgT = nRT
N

Exercice 13 : Gaz de photons

On va suivre la méme démarche que dans l’exercice précédent. On regarde ce qu’il se passe
entre t et t + dt. On considere une fraction de la paroi, de surface S. Le volume dans lequel se
trouvent les photons qui vont entrer en collision avec la paroi pendant cet intervalle de temps
est:

cdt
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dV = Sedt

Dans ce volume il y a N% photons, et % d’entre eux vont dans la bonne direction, il y a

donc
1 Nav ENScdt

dN = = =
6 V 6 V
photons qui entreront en collision avec la paroi entre ¢ et ¢ + dt. Un photon a une quantité de
mouvement avant le choc pavant = % et apres le choc papres = —%. Donc la variation de quantité

de mouvement d’un photon vaut % — (—%) = 2%. Donc la variation de quantité de mouvement

des dN photons concernés vaut :

h
dp = 22 AN
=23

On a donc :
p_lp_ldp_2h1Ne 11 Nhe
S Sdt A6V 3V A

On reconnait 4, ’énergie d’un photon. Donc 2’ = U, l’énergie totale. On obtient alors :

p_1U
3V
Cette relation, avec un peu de thermodynamique, permet de retrouver la loi de Stefan-
Boltzmann (par exemple en faisant suivre aux photons un cycle de Carnot).

4 Transferts thermiques

Exercice 14 : Chauffe-eau solaire

1. Les pertes sont d’origine conducto-convectives, entre = et = + dzr elles sont donc
localement de la forme :
dPpertes = adS(T'(x) — 1)

Avec «a le coefficient de transfert conducto-convectif, et dS la surface infinitésimale considérée.
Un peu de géométrie nous permet de dire que la portion de surface comprise entre = et x + dx
est de largeur dz et de longueur b. Ainsi :

dPpertes = ab(T(z) — Tp)dx

Pour ce qui est du signe, on raisonne qualitativement. Si le chauffe-eau est plus chaud que
’air environnant, il perd de l’énergie, les pertes sont donc positives.

2. On considére l’eau contenue entre les abscisses = et = + dz. La masse de l’eau contenue
dans ce systeme vaut pSdz (masse volumique p dans un volume Sdz, avec S la section du
tuyau). La variation d’énergie interne entre t et ¢t + dt de ce systeme vaut

dU = pSdxc,(T(t + dt) — T (t)) = pSdxc,(T(t + dt) — Ty — (T(t) — Tp)) = pSdxcydf
L’énergie regue par le systeme dle au rayonnement solaire s’écrit :

5Q1 = Ebdxdt
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(une surface bdx recoit une puissance par unité de surface F, ’énergie est donc la puissance
fois le temps). L’énergie recue par le systeme dle aux transferts conducto-convectifs s’écrit :

0Q2 = —dPpertesdt = —ab(T(x) — Tp)dxdt = —abf(x)dxdt

On applique le premier principe de la thermodynamique a ce systeme (aucune force ne
travaille) :
dU = 0Q1 + 6Q2

pSdzcydf = Ebdxdt — abb(x)dxdt
df
Y Ep—
pScy o b— abl(x)

Il faut maintenant passer d’une dérivée temporelle a une dérivée spatiale. Entre t et ¢ + dt,
passe une masse d’eau dm = D,,dt entre x et x + dz. Cette quantité d’eau occupe un volume
Sdx. Donc dm = pSdx = D,,dt. On obtient donc dt = %dm. On réinjecte ceci dans ’équation

différentielle et on obtient :

do
Cpo% = Eb— abl(x)

3. On met cette équation sous forme canonique :

o ab B
dr  ¢,Dpm  ¢Dp

_ G D, _ F H .
On pose L = =™, et 0, = ¢, et on obtient alors :

dd 0 O
& I T
Pour résoudre cette équation différentielle, on résout d’abord l’équation homogene associée :
do 0
Z 4 =0
dx + L

Cette derniére admet pour solution ;,(z) = Ae~*/L. On trouve ensuite une solution particuliére.
Le second membre est constant, on cherche donc une solution constante, cela donne 6, = 0.
Finalement :

0(x) =0 + 0, = e "L 16

On trouve \ avec la condition initiale : O(x = 0) = A4+0 = T1 =T, A =T1—To—000 = T1 — (0o +T0) =
T — Tw. Cela donne en fin de compte :

0(x) = (Th — Too)e /T + 64

Pour s’assurer que l'eau chauffe autant que possible, on peut choisir une longueur totale du
tuyau de quelques fois L. Par exemple 4, car e 4 ~ 0.02 < 1.

Il est préférable de placer 'ensemble sous une vitre transparente car une vitre laisse passer
la lumiére, donc la source d’énergie, mais empéche le contact entre l'air a Uintérieur et lair a
’extérieur, ce qui diminue les pertes par conducto-convection, augmentant la température
finale et diminuant la longueur de tuyau nécessaire.

Exercice 15 : Equation de la chaleur

1. La présence du moins indique que si g—f > 0, c’est-a-dire si la température est plus
importante a droite qu’a gauche, alors ’énergie va de la droite vers la gauche : ’énergie va du

plus chaud au plus froid. Cela semble naturel.
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2. L’énergie interne dU de la section infinitésimale varie entre t et t + dt, donc la variation
de dU variation de dU vaut :
dU(xz,t 4+ dt) — dU(z, 1)

Par ailleurs, la puissance fournie au systeme a gauche par les transferts thermiques vaut, par
définition de jg :
Pgauche = SjQ(:E,t)

Pour ce qui est de la droite, jp étant orienté de la gauche vers la droite, la puissance regue
par le systeme a droite vaut

Donc, le transfert thermique étant la puissance fois le temps :

52@ = (Pgauche + Pdroite)dt

On applique ensuite le premier principe de la thermodynamique au systeme considéré, et on
obtient, sachant qu’aucune force ne travaille :

dU (2t + dt) — dU (z,t) = S(jo(x,t) — jo(z + dz, t))dt

3. On considére un probléme ou la température n’est pas uniforme. C’est pour cela qu’on
fait appel a des infinitésimaux; si le systeme est suffisamment petit, on peut considérer
la température de ce systeme uniforme. Cela permet d’écrire que l’énergie dU du systéme
considéré vaut, au temps t :

dU (z,t) =dm x ¢ x T'(x,t) = pSedzT(x,t)

La capacité thermique étant la capacité thermique massique fois la masse du systéme.

4. On revient donc au calcul de chacun des termes de [’écriture du premier principe. Le
terme de gauche devient :

dU (z,t 4+ dt) — dU(z,t) = pSc(T(z,t + dt) — T(x,t))dx = pSc%—{(w, t)dxdt

Le terme de droite vaut, en utilisant la loi de Fourier :
. . or oTr o°T
S(io(x,t) — jo(x + do,t))dt = SA(%@ +da,t) = 5z, t))dt = SAT— (@, t)dadt

On obtient finalement :

or o*T
pScE(az, t)dzdt = S)\w(x, t)dxdt

or _ o1

Pt = Va2

5. L’équation de la chaleur devient :

or O*T

= —_ D=

ot Ox?

Ce qui nous donne les homogénéités de [D] = L2.T~!. On peut donc construire une distance
typique L telle que D = LTQ
L=+vDt
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6. Si un état stationnaire est atteint, 7' ne varie plus dans le temps, donc n’est plus une
fonction de t. Sa dérivée partielle par rapport a ¢t s’annule donc, et ’équation de la chaleur
devient :

0= D@
T
-3 =
On primitive :
dr
=
Avec A une constante. On primitive a nouveau :

A

T(x)=Ax+ B
Avec B une autre constante. Les solutions sont donc bien affines de z.

7. On sait donc qu’il existe deux constantes A et B telles que T'(z) = Ax+ B. La température
est continue de 'espace. En effet, le flux d’énergie (jg) est continu, ce qui impose la continuité
de %’ donc en particulier de T par rapport a x. Cela nous donne comme conditions :

Ax0+B =T,
Ax L+B =T5

B= T,
h-Ty
L

A

Finalement :

T(z) = (Tp — Tl)% Ty

Exercice 16 : Cuire un oceuf dur (IPhOs 2006)

1. Tout U'ceuf doit étre amené a la température de coagulation. L’énergie minimum nécessaire
est donc :

AU = Cy AT
Avec Cyop = mC = pVC = p3nR3C

4
AU = gMR%*(TC —Tp) ~ 1.7 x 104J

2. L’eau est bouillante, donc 77 = 100°C On utilise la loi de Fourier pour affirmer que

T —Tp
R

3. Par définition de j, la puissance transmise a ['ceuf vaut :

j=k ~ 2.5 x 10°Wm™2

P =jS = 4nR?J = 4wkR(Ty — Tp) ~ 19W
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4. En ordres de grandeur, ’énergie vaut la puissance fois le temps, donc le temps typique 7
de cuisson vaut :

T_g_uCR2Tc—T0

P 3K T1—T0

C’est bien U'ordre de grandeur du temps de cuisson d’un ceuf dur.

~ 15min

5 Probléeme : le thermophone a tube a essai (adapté du test de prése-
lection des IPhO 2025

1. La relation liant la célérité, la fréquence et la longueur d’onde s’écrit :

c=\f8

Orw=2 =2rfeth=2",
Ainsi :

2. Les forces de pressions s’écrivent :
— a gauche, sur la paroi en z :p(ac,t)dSu_x>
— a droite, sur la paroi en x + dx = —p(x + dx,t)dSzTgZ

3. On utilise ici la seconde loi de Newton qui sera (re)vue en cours de mécanique.
md =% F
Ici, on projette cette relation sur l'axe ;. On obtient :
mag = (p(z,t) — p(z + dx,t))dS

On peut approximer la différence dans le second membre comme le numérateur d’un nombre
dérivé :

ma, = —@dde
ox

Le symbole 0 est utilisé pour signifier qu’on prend la dérivée (usuelle) par rapport a une
variable (z) spatiale d’une fonction qui dépend de plusieurs variables (espace et temps).
Pour l’accélération, le déplacement de la masse est donnée par £ donc :
6—25 = —@d ds
oz T o™
Pour la masse, nous avons envie de U’exprimer a partir du volume dxdS et de la masse
volumique. Le probléme est que la masse volumique varie selon x. On utilise 'approximation
donnée dans le texte que la masse volumique peut, relativement aux autres variations, étre
considérée comme constante.
Ainsi :
PE . 9p

8. Cette relation peut étre retrouvée a partir des dimensions et de la "célebre" formule apprise au college
__ distance
~  temps

v
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On simplifie ensuite 'expression pour obtenir le résultat attendu.
Ainsi :
9% Op

Moz~ o
4. On utilise les expressions données pour la pression et le déplacement longitudinal.
—Pmk —pmk —DPm

—po&m sin(kz)w? cos(wt) = —pmk(— sin(kx)) cos(wt) <= &m = pow?  pocPk?  pock

5. On suppose que la surpression acoustique est nulle en z = L. Ainsi, on en déduit :

p(L,t) = 0 <= py, cos(kL) cos(wt) = 0 <= cos(kL) = 0 <= kL = (2n + 1)~ S k=(n+ 1)%

6. Le spectre de fréquence comporte plusieurs pics identifiables. Le pic de plus haute
intensité et de plus basse fréquence non nulle est appelé fondamental : 0,66k Hz. Ensuite,
plusieurs autres pics sont visibles : 1, 3l<:Hz 1,95kHz, 3,25kH z et 3,92k H z.

Or, on sait que w = 2rf = ke < f = k¢ = (QTZT?”C = (Q"H)

7. Ainsi, la fréquence fondamentale fo = 47- On peut donc en déduire la valeur de ¢ = 4L .

Une autre méthode est de considérée 'espacement entre deux fréquences

for _ 2+ +1De (2n+1lec  2¢ ¢
I AL AL AL 2L

On peut donc en déduire la valeur de c de deux fagons. Pour étre le plus précis possible,
on devrait privilégier '’espacement entre les fréquences, car on dispose d’un jeu de données
important et on peut effectuer une moyenne des mesures. En revanche, on observe que
’espacement n’est pas toujours régulier et qu’il y a des artefacts dus aux mesures.

La valeur numérique est proche de celle attendue.

8.

Le déplacement acoustique au centre du stack est :

E(xs,t) = &y sin(kaxs) cos(wt), krs = %
Or sin(7/4) = 1/4/2, donc 'amplitude maximale vaut :
_&m
gmax - \/i'
Les positions extrémes sont alors :
T23 =T +§7m 5'341293—5*m
S \/g? S \/5‘
9.
Le profil de température du stack est :
Ts(x) =To + VT (zs — x).
En évaluant en z4; et x93 :
Ts41=To+VTs§ﬂ, Ts03 = VTgfm
’ V2 ’ V2
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10. La température acoustique locale vaut :

T(xs,t) =Ty — T, cos(kxs) cos(wt), cos(kxs) =

Nl

Aux extrémités du mouvement rapide :
- Fin de la phase 1 — 2 (coswt = +1) :

Ty =Ty~

ok

- Fin de la phase 3 — 4 (coswt = —1) :

Ty =Ty +

5)s

Ainsi :

Tm Tm
To=Th— —=,  Ty=Ty+ —=.
2 0 /R 4 0 o)
11 Pour que le cycle fournisse un travail net au fluide, il faut que la particule :
- regoive de la chaleur au point chaud, donc T < Ts 41, - céde de la chaleur au point froid,
donc T > T 23.
En utilisant les résultats des questions précédentes :

Tm gm
Ty < T. = T+ —= <Ty+ VT,-—,
4 8741 0 \/i 0 S\/i
To > Ty o3 — To—T7m>T0—VTS§7m.
’ V2 V2
Dans les deux cas, on obtient la méme condition :
VT, >
Em

Cette inégalité est la condition d’amplification thermoacoustique : le gradient thermique
imposé par le stack doit dépasser un seuil critique pour permettre une conversion nette de
chaleur en travail acoustique.

Préparation aux olympiades — version 2025-26 — contributeur-ice-s : Loise Launay, Mathurin Rouan
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